
Authorization Server

Version 3.1.3

User Guide

20.02.2024

TCG Informatik AG

Table of contents

31. Getting Started

31.1 System Requirements

61.2 Understanding the User Interface

91.3 How to get Started

111.4 Manually registering clients (applications) to the Authorization Service

142. Concepts

142.1 Platform Authorization and Authentication

173. Advanced Topics

173.1 External Identity Providers

233.2 Using Entra ID as an External Identity Provider

263.3 Writing Plugins for the Authorization Server

283.4 Certificates

303.5 Application Settings explained in detail

343.6 Using Postman to Test Authentication Flows

374. About

374.1 Release Notes

404.2 Copyright

Table of contents

- 2/40 - TCG Informatik AG

1. Getting Started

1.1 System Requirements

These are the system requirements for TCG Authorization Server.

1.1.1 Operating System

The following operating systems and system components are required.

Supported

Microsoft Windows Server 2016 or higher

Recommended

Microsoft Windows Server 2019

1.1.2 Microsoft Windows Server Roles and Features

To install and set up the TCG Authorization Server, you must first install Internet Information Services (IIS) and the .NET 6 hosting bundle

for IIS.

Important Please make sure that the latest updates for Microsoft Windows and all the installed components are installed.

Setting Up IIS

If the IIS features are not installed yet on your system, you can use the following commands in a PowerShell to install them:

.NET 6 Hosting Bundle for IIS

Important The installation of the .NET 6 SDK or .NET 6 Runtime are not enough, https://dotnet.microsoft.com/en-us/download/dotnet/

6.0

Configured SSL Certificates

A configured HTTPS certificate is mandatory. Browsers refuse to use required encryption modules in case the communiation is not

encrypted.

Set-ExecutionPolicy Bypass -Scope Process
Enable-WindowsOptionalFeature -Online -FeatureName IIS-WebServerRole
Enable-WindowsOptionalFeature -Online -FeatureName IIS-WebServer
Enable-WindowsOptionalFeature -Online -FeatureName IIS-WebServerManagementTools
Enable-WindowsOptionalFeature -Online -FeatureName IIS-ManagementConsole

1. Getting Started

- 3/40 - TCG Informatik AG

https://dotnet.microsoft.com/en-us/download/dotnet/6.0
https://dotnet.microsoft.com/en-us/download/dotnet/6.0

Extended IIS Maximum Query String Length

By default, IIS limits the maximum query string length on IIS to 2048 bytes. This can lead to requests to the Authorization Server being

blocked by IIS. Therefore, Authorization Server ships with an extended query length limitation to 10000 bytes.

If this limit is still not sufficient, please notify the vendor. Increase the maximum query string (Bytes) in the Request Filtering Settings of

IIS. Alternatively, you can set it in the IIS web.config file of the Authorization Server, however, this can lead to installations not being able

to update that file anymore.

1.1.3 Encrypted Communication (HTTPS)

It is not possible to run the TCG Authorization Server without SSL encrypted web traffic. The transferred data is very confidential and

leaking this sort of data exposes access to the entire set of services that depend on it. The only case where non-encrypted http traffic is

considered ok is in a load balancer scenario where the IT specialist has the necessary experience to create private networks. All known

requirements for SSL certificates also apply, such as they must not be expired, state-of-the-art ciphers, self-signed certificates require

explicit setup to trusted root certificates.

1.1.4 Hardware Requirements

The following hardware requirements need to be considered.

Storage

A solid-state drive (SSD); no spinning disks

Memory and CPU

TCG Authorization Server - at minimum 4 GB RAM, 2 cores

Database server - at minimum 4 GB RAM, 2 cores, optimized for I/O operations

1.1.5 Supported Database Server

The following database server are supported.

MS SQL Server

Microsoft SQL Server 2016, Microsoft SQL Server 2017, Microsoft SQL Server 2019, and Microsoft SQL Server 2022.

The MSSQL databases require the READ_COMMITTED_SNAPSHOT set to ON - that is automatically taken care of by our automatic

installation and our scripts.

recommended: min. Microsoft SQL Server 2019

Important For production not supported any SQL Express version of MS SQL Server.

<security>
 <requestFiltering>
 <requestLimits maxQueryString="100000" />
 </requestFiltering>
</security>

•

•

1.1.3 Encrypted Communication (HTTPS)

- 4/40 - TCG Informatik AG

Oracle

Oracle 19 c, Oracle 18 c (18.3), Oracle 12C R2

recommended: min. Oracle 12C R2

Important There are special installation requirements for setting up Oracle databases prior to running the installation. For more

information, refer to the Administrator Guide.

PostgreSQL

PostgreSQL version 12.9 and higher

recommended: PostgreSQL version 14

Important You can use user name and password but no trusted connections.

DB2

DB2 10.5 and 11.5

Important There are special installation requirements for setting up DB2 databases prior to running the installation.

Azure SQL

Usage on Azure Cloud only.

1.1.5 Supported Database Server

- 5/40 - TCG Informatik AG

1.2 Understanding the User Interface

The application is displayed in different frames: the header toolbar on the top and the main area in the middle with the fields and its

snippets.

1.2.1 Header Toolbar

The header toolbar is the area on the top that shows an application name, the available working modes, as well as the signed-in user and

shortcut keys.

1.2.2 Home Tab

The Home tab provides the Sign in button. Click this button to open the window to enter the user name and password. Then provide the

user name and password and click Login.

User

For a Windows user, you can enter the name for a domain.

<domain name>\<user name>

Password

Enter the password for the provided user.

1.2.3 Sessions

Shows all current sessions of the logged in user. Open browser sessions are shown and can be deleted. The current session is explicitly

indicated. All issues tokens, which are for example used by the platform's Web UIs, can also be deleted. Deleting tokens does not

necessarily have an immediate effect, as there is no token revocation. Therefore, tokens will stay valid for resource services that cached

them.

1.2.4 Management Tab

The Management tab is shown only for a signed-in administrator user. The tab shows a table of all available client IDs. If needed, you can

add a new and edit or delete an existing client ID. You can also show the client ID's details in a separate window.

1.2 Understanding the User Interface

- 6/40 - TCG Informatik AG

The table provides the following columns:

ClientId - Available client Id

Client Secrets - If a client secret is available for a client Id the Copy button is displayed that allows you to copy the client secret into

the clipboard.

Permissions - The permissions include authorization modes, introspection settings, and additional permissions.

RedirectUris - a list of valid redirect uris for the client

PostLogoutRedirectUris - a list of valid post logout redirect uris for the client

Type - if the client is a public or confidential client.

Actions - Buttons to edit, view or delete the application client registration

1.2.5 Roles

Only available for administrators.

This tab shows all available roles. These roles can be used, for example, by the platform, for internal role assignments. There are 2 actions

available: deleting and hiding roles. After a role is deleted, the role is deleted from the stored list. Roles can also be hidden, which is more

practical if the intention is to not make the role available for external applications, such as the platform.

Active Directory user groups are shown as a role. These roles are not the roles that are part of the platform. Commonly, a role is assigned

to a platform role. Other applications can do similar assignments.

1.2.6 Identity Providers

The Authorization Server by default integrated into Windows Active Directory. The Identity Providers tab allows to configure settings for

Active Directory. External identity providers can be configured here as well. Please refer to How to configure identity providers for more

information.

In Active Directory Settings, you can configure whether or not AD users and groups are collected and made available in the Roles tab. You

can define which groups are made available - only for the local machine, only for the domain, or both. You can specify an Active Directory

name or container.

Global IDP Settings allow to disable the automatic collection of roles of users that are authenticated by external identity providers. The

service also periodically queries all external IDPs for available roles. This interval can be set here as well.

1.2.7 Toolbar and Other Icons

The following icons are shown on the user interface.

•

•

•

•

•

•

•

1.2.5 Roles

- 7/40 - TCG Informatik AG

1.2.8 Shortcut Keys

The following shortcut keys are provided.

Symbol Name Description

Help Click this icon and select either Show help or About from the context menu. Clicking Show help, opens the

client's user guide help in a new window. Clicking About, opens the client's About window with copyright as

well as third-party copyright information.

Copy client ID Click this icon to copy the client ID into the clipboard.

Edit client ID Click this icon to open the Edit Client Id window that allows you to change the current settings for the client

secret, permissions, custom permissions, redirect Uris, and post logout redirect Uris.

Show details Click this icon to show the Client ID details window. The window list the client ID, client secret, the

permissions, the post logout redirect Uris, and redirect Uris.

Delete client ID Click this icon to delete the client ID with all its details.

Shortcut Key Action

Sign in Allows the user to enter a user name and password and click Login to sign in to the TCG Authorization Server. The signed-in user can now

access available Primus components and clients without the need to sign in again.

New Client

ID

Click the button to open the Add New Client Id window that allows you setting up the settings for a new client ID by providing the

configuration for client secret, permissions, custom permissions, redirect, and post logout redirect Uris. To save the changes, click Create Client

Id button.

Create Client

ID

Click the button to create a new client ID with the current settings in the Add New Client Id window.

Edit Client

ID

Click the button to open the Edit Client Id window that allows you changing the settings for an existing client ID by providing the

configuration for client secret, permissions, custom permissions, redirect, and post logout redirect Uris. To save the changes, click Save Client

Id button.

Save Client

ID

Click the button to edit a client ID with its current settings for client ID and client secret, permissions, custom permissions, redirect and post

logout redirect Uris.

Sign out Click the button and confirm the log out by pressing Yes to log out the current user.

1.2.8 Shortcut Keys

- 8/40 - TCG Informatik AG

1.3 How to get Started

Once the TCG Authorization Server is installed the TCG Authorization Server Web client is available.

For a normal user, the Web client provides the Home tab and the Session tab. A signed-in user can then use other applications, such as

Primus Process Modeler and Process Monitor or external clients, such as, Document Review and Batch Review with single sign-on (SSO).

SSO means that for the other applications you do no longer have to sign in. The Session tab shows all open sessions of the current user and

allows to delete any issues tokens.

For an administrator user, the Web client provides several other tabs:

Management tab to manage the client applications.

Roles tab to list and optionally hide all roles and users that are available for role searches

Identity Provider to configure Active Directory and external identity provider integrations.

For more information on how to use the user interface, refer to the user interface topic.

1.3.1 Creating a new Client

To allow single sign-on for example for an external client for Primus, you need to create a new client Id and set its configuration.

Important An Administrator user only can add and maintain client IDs on the Management tab.

•

•

•

1.3 How to get Started

- 9/40 - TCG Informatik AG

Perform the following steps to create a new client ID.

From the Management tab click New Client Id. The Add New Client Id window is displayed.

Enter the client ID that uniquely identifies your application.

Optionally, enter the client secret. A client that has a client secret is called confidential client. A client secret is required when these

credentials are used by a service in a client credentials grant type logon. In case of a non-confidential client like a SPA or WPF client, a

client secret is not needed since it cannot be kept secret. Those clients are called public clients.

Set the Authorization modes by selecting one or more items for: Client credentials, Password, and Authorization code.

Optionally, set the introspection by selecting Yes. By default, the option is set to No. Only resource services that verify that a client is

authorized to access resources require that.

Optionally, you can give special permissions to daemons that sign in using client credentials. Chose an option of the additional

permissions. By default, None is selected.

Authentication service admin: useful for daemons (services) that must have the permission to automatically configure the service.

For example, the platform installer uses this permission.

Resource service: gives a system claim to daemons that are resource services. Platform services have this privilege.

Activity host: gives a system claim to a daemon that is not a resource service, but that still requires system permissions. For example,

Activity Server processes get this permission.

Add windows SIDs that the client always receives on the login. This option is only recommended for confidential clients, with the

explicit use case of an Activity Server/Host that is intended to run with permissions of a technical user. In that case, the Activity Server

should not get the Activity host additional permission.

Add a uri for Redirect Uris for clients that use the authorization code flow. Without correct redirect uris, a web client cannot use the

authorization code flow as the Authorization Server refuses to redirect to unknown redirect uris. The Redirect Uri is case sensitive.

For rich client applications it is sufficient to specify http://localhost/ to be able to use any port on localhost redirect URIs.

Add a uri for Post Logout Redirect Uris. If needed, you can add several uris as needed. The uris are case sensitive.

Click Create Client Id to create the new client Id with the configured settings. To close the window without saving any changes, click

Back to Management.

1.

2.

3.

4.

5.

6.

•

•

•

7.

8.

•

9.

10.

1.3.1 Creating a new Client

- 10/40 - TCG Informatik AG

http://localhost/

1.4 Manually registering clients (applications) to the Authorization Service

Every application delegating authentication of users and services to the Authorization Service requires a registered client (often also called

application). There exist two types of clients: public and confidential clients. Public clients are Single Page Applications or Rich Clients on

a desktop, because a client secret cannot be securely hidden from a user. Confidential clients are daemon services such as the platform's

configuration service. Those services run on a secured VM to that only authorized users have access and where the typical user cannot even

see the configuration files.

When the platform installer is used to set up a system, it creates all clients that are required to run the platform automatically (unless you

opted out of that behavior). In those cases, nothing needs to be done.

However, when you add a custom web client or new rich client, want to create a custom client for another Activity Server or need to

recreate a client for a resource service of the platform, some things must be taken into consideration:

Is the client public or confidential as in "can it keep a secret"?

If it is a public web client, where is it hosted?

If it is a daemon application, does it need special permissions?

Important When using the authorization code flow with PKCE with a custom client application (for example your website), ensure to

only expect a code response and use PKCE. The Authorization Server does not support the OAuth2.0 Implicit flow.

For convenience, we provide some example scenarios that help you to pick the correct configuration for your new client registration.

Important When using Redirect Uris keep in mind that they are case sensitive. The URIs "http://my.contoso.com/editor" and "http://

my.contoso.com/Editor" are not the same and lead to error. We recommend to lowercase the redirect URIs on the client side and only

register lowercased redirect URIs.

1.4.1 Example: Create a Client for an Activity Server

Enter the New Client ID menu.

Provide a client ID as well as a client secret.

Select the Client credentials authorization mode and the additional permission Activity host.

Create the client by clicking on Create Client ID.

1.4.2 Example: Create a client for an Activity Server as technical user

In the past, Activity Servers had the option to run as a technical user. While a windows service can still do that, it does not have any effect

on the given permissions anymore. To re-create that scenario, you need to do the following steps:

Enter the New Client ID menu.

Provide a client ID as well as a client secret.

Select the Client credentials authorization mode

Do not select Allow introspection nor Additional permissions

Under Windows Security Identifiers add the SIDs of a technical user or group that you use to configure access permissions.

•

•

•

1.

2.

3.

4.

1.

2.

3.

4.

5.

1.4 Manually registering clients (applications) to the Authorization Service

- 11/40 - TCG Informatik AG

http://my.contoso.com/editor
http://my.contoso.com/Editor
http://my.contoso.com/Editor

Obtaining a windows user SID

To determine the SID of a windows user, you can use the Get-ADUser powershell commandlets. Please see https://docs.microsoft.com/en-

us/powershell/module/activedirectory/get-aduser?view=windowsserver2022-ps for more information.

Another approach that works via powershell is the following:

1.4.3 Example: Create a Client to be used by a Website

SPAs are public by design since every piece of configuration is sent to an unknown browser on an unknown machine. The same is true for

rich clients and may even be true for Asp.net Core MVC applications.

Enter the New Client ID menu.

Provide a client ID, but leave the client secret field empty. Web sites are public clients and cannot keep a secret.

Select the Authorization code authorization mode.

If the web app works with the platform, you must ensure enough scopes

Set the interactive scope if the client is accessing interactive activities, also known as external activities

Set the unattended scope if the client also must be able to access unattended activities, such as time driven, or document driven

activities.

Provide a Redirect Uri and a Post Logout Redirect Uri that are both valid and both point to paths that your website accepts. Usually,

you use an OIDC client library that handles these tasks. Ensure that the web site uses the redirect uris only in lower case when sending

them to the Authorization Server - Redirect URIs are case sensitive. If your websites sends "https://my.site.com/oidc-login" but only

registered "https://my.site.com/" or "https://my.site.com/OIDC-login", the redirect uris do not match and the login does not work.

Create the client by clicking on Create Client ID

$username='techUser'
$user = New-Object System.Security.Principal.NTAccount($username)
$sid = $user.Translate([System.Security.Principal.SecurityIdentifier])
$sid.Value

1.

2.

3.

4.

a.

b.

5.

6.

1.4.3 Example: Create a Client to be used by a Website

- 12/40 - TCG Informatik AG

https://docs.microsoft.com/en-us/powershell/module/activedirectory/get-aduser?view=windowsserver2022-ps
https://docs.microsoft.com/en-us/powershell/module/activedirectory/get-aduser?view=windowsserver2022-ps
https://my.site.com/oidc-login
https://my.site.com/
https://my.site.com/OIDC-login

1.4.4 Example: Create a Client for a Rich Desktop Application

Rich clients are public by design since all configuration must be on the user's local machine.

Enter the New Client ID menu.

Provide a client ID, but leave the client secret field empty. Rich clients are public clients and cannot keep a secret.

Select the Authorization code authorization mode.

If the web app works with the platform, you must ensure enough scopes

Set the interactive scope if the client is accessing interactive activities, also known as external activities

Set the unattended scope if the client also must be able to access unattended activities, such as time driven, or document driven

activities.

Set the Redirect Uri to http://localhost/ . Setting localhost implicitly allows any port to be used, so that a rich client can spawn a

web service listening on a random free port on the local OS.

Leave the Post Logout Redirect Uri empty. This Uri must be matched explicitly and is of no use for a rich client application. Ensure

that the rich client uses the redirect uris only in lower case when sending them to the Authorization Server - Redirect URIs are case

sensitive.

Create the client by clicking on Create Client ID

1.4.5 Example: Create a Client for a resource service of the Primus Process Management System (a

daemon application)

Daemon applications are run without any user interaction and thus cannot use the authorization code flow. Leaving username and password

in a configuration file on disk is also not recommended. Instead, you use a clientId and clientSecret that are not directly tied to any actualy

user account and provide credentials necessary for a machine to authenticate itself when talking to another machine.

Enter the New Client ID menu.

Provide a client ID as well as a client secret.

Select the Client credentials authorization mode and the additional permission Resource Service.

Select Allow introspection - yes. The resource service must be able to verify access tokens it receives.

Create the client by clicking on Create Client ID.

1.4.6 Example: Create a Client for an application that uses the password grant flow

Using this grant type is strongly discouraged as the client application would always get access to the username and password. Use the

Authorization code with PKCE flow whereever possible.

Enter the New Client ID menu.

Provide a client ID, but no client secret. Like the Authorization code flow, the Password flow is used by public client applications that

cannot keep a secret.

Select the Password authorization mode.

Create the client by clicking on Create Client ID.

1.

2.

3.

4.

a.

b.

5.

6.

7.

1.

2.

3.

4.

5.

1.

2.

3.

4.

1.4.4 Example: Create a Client for a Rich Desktop Application

- 13/40 - TCG Informatik AG

2. Concepts

2.1 Platform Authorization and Authentication

Primus uses the OAuth2 protocol for the authorization of users. OAuth2 itself does not directly deal with the authentication of users and

clients. However, the authentication is required to grant authorization and thus access.

The authentication provides information about “who one is”, for example, the registered Windows user User1. The authorization deals with

the information about “who grants which permissions to whom”. For example, the authorization service grants several user rights to the

Windows user User1 based on the Windows groups to which Users1 is a member of.

Single Sign-on (SSO) occurs when a user logs in to one application and is then signed in to other applications automatically, regardless of

the platform, technology, or domain the user is using. The user signs in only one time, hence the name of the feature (Single Sign-on). To

achieve single sign-on (SSO) for Primus and all its components and external clients, the platform now uses OpenID Connect (OIDC). OIDC

is an open authentication protocol that profiles and extends OAuth 2.0 to add an identity layer. OIDC allows clients to confirm an end user's

identity using authentication by an authorization server.

For example, a user (resource owner) provides its credentials to the client, in this case the STG.RT.API, to obtain an access token from the

authorization server. The access token can then be used to obtain protected resources from a resource server such as the Primus

configuration service.

Note that for the sample above there are three major communication paths that are not shown in the simplifying schematic, however, the

Primus uses them:

The Authorization Server does not show the authentication service

The Resource Server generally verifies the access token with the authorization server for validity.

In general, the access token provided by the TCG Authorization Server is accompanied with a long-lived refresh token. Once the access

token expires, the refresh token is used to obtain a new access and refresh token. Each refresh token can only be used once. Refresh tokens

are only intended for the client and are not intended to be passed on to a resource service. Refresh tokens provide a further layer of security

•

•

2. Concepts

- 14/40 - TCG Informatik AG

as a potential attacker can only misuse an intercepted access token for a short period of time. An access token by itself cannot be exchanged

for a new access token.

Primus provides authentication via different methods:

Authorization Code Flow with PKCE via a web browser

User name and password authentication via the password grant flow

Client authentication via the client credentials grant flow

Authorization Code Flow with PKCE

This authorization flow is the current best practice when logging into any client application because it avoids entrusting a client application

with user credentials.

The Authorization Code Flow with PKCE (proof key for code exchange) is a security extension for public clients like web sites. A user

that wants to log into a web site is redirected to the log in page of the TCG Authorization Server. If the user has not yet authenticated itself

to the TCG Authorization Server, he enters a user name or password into the login field. After the credentials have been verified, the user is

redirected back to the web site where he started, along with a authorization code. This authorization code is used by the website to

exchange it with the Authorization Server for an access token. The authorization code part prevents user credentials to ever be entered into

a potentially non-trusted client application. The PKCE part in this flow prevents the access tokens to be passed around in redirect URLs

shown in the browsers URL tab, thereby preventing accidental token leakage by copy/pasting the url.

Any other website or WPF application that uses the TCG Authorization Server as its authorization authority can from that point onwards be

used without having to provide the username or password again, as long as the user is still authenticated to the TCG Authorization Server

via his web browser. When the user moves to a different computer or uses a different browser, he has to repeat the login flow.

Authorization via User Name and Password

For the password grant flow type of the authentication, the platform sends a user name and password to the authorization service that then

uses an internal authentication provider to confirm the correctness of both. Upon a correct user name and password, the authorization

service creates an access token and request token with the claims of the user from the Windows groups the user is a member of.

•

•

•

2.1 Platform Authorization and Authentication

- 15/40 - TCG Informatik AG

Authorization via client credentials

The client credentials grant flow type of authorization allows you to register client credentials with the authorization service, along with

claims which each clientId may receive. This type of authorization is intended for machine-to-machine communication and not for typical

user interactions. In this flow, a client Id and matching client secret is sent to the authorization service that issues an access token. Once the

access token expires, client Id and client secret can be used again to obtain a new access token. Also, in some cases a refresh token is made

available that can also be used to acquire a new access token.

Since the client credentials flow uses a client ID and secret, the administrator must make sure that these client credentials are stored in a

secure manner and can only be accessed by authorized users. On Windows, they are usually stored in files where only authorized users as

well as the service using these credentials has access. An additional layer of security can be added by encrypting the client secret and only

giving authorized users as well as the service access to the encryption keys. The additonal layer does not prevent administrators to extract

the secrets from machines, but it prevents leaking the secret by accidentally copying and distributing the file containing the secret.

2.1.1 Refresh Token Flow

The authorization service provides an access token together with a long-lived refresh token, if the used client ID has the permission to use

refresh tokens and uses the scope 'offline_access'. Once the access token expires, the refresh token is used to obtain a new access and

refresh token. Each refresh token can only be used once. Refresh tokens are only intended for the client and are never intended to be passed

on to a resource service.

Refresh tokens provide a further layer of security as a potential attacker can only misuse an intercepted access token for a short period of

time. An access token by itself cannot be exchanged for a new access token.

2.1.1 Refresh Token Flow

- 16/40 - TCG Informatik AG

3. Advanced Topics

3.1 External Identity Providers

The Authorization Server can be configured to use an external identity provider (IDP), such as Keycloak, to authenticate users. An external

IDP cannot be used to handle client credentials or custom grant types. It can only be used to handle the authorization code grant type.

For an external IDP to work, it must implement the OIDC specification and support the authorization code flow. The Authorization Server

integrates into the external IDP via the .NET Microsoft.AspNetCore.Authentication.OpenIdConnect package, using

AddOpenidConnect .

Only Open ID Connect is supported. Other authentication mechanisms, such as, SAML, are not supported.

The identity provider can be configured via the TCG Authorization Server Web UI.

3.1.1 Claims Required from the External IDP

Independent of what identity provider is used, it must provide at minimum the following claims in its ID token or via the userinfo endpoint:

sub : for the unique user ID, MUST BE in both the ID token and the user info response, see OIDC specification

name claim: for the user's display name, configurable.

username claim: for the user's username

3.1.2 Claim Required by the Platform

The reason why we provide a custom Authorization Server is for guaranteeing for all applications in this eco-system some authorization

defaults. For example, you can theoretically use any sort of string to adorn a user with permissions to do something. Some systems provide

them as a role , others as roles , yet others as http://schemas.microsoft.com/ws/2008/06/identity/claims/role or http://

schemas.xmlsoap.org/ws/2005/05/identity/claims/sid .

•

•

•

3. Advanced Topics

- 17/40 - TCG Informatik AG

https://openid.net/specs/openid-connect-core-1_0.html#IDToken

To relieve resource services and other applications in this eco-system from guessing and too many configuration options, some defaults

must be provided among the claims of authenticated users. These defaults date back from when the platform was still tightly coupled to

windows. The following defaults must be honored to ensure the relationship to the Authorization Server to work:

A unique user ID is a claim of type sub

For backwards compatibility (3.1.0 or earlier), this claim is also present as http://schemas.microsoft.com/ws/2008/06/

identity/claims/primarysid

This claim is used to remember which user locked a process for editing

The username of the user is a claim of type username

The username is often used when assigning an entity to a particular user. We assume that the used external authentication realms

do not collide in a way that the same username belongs to 2 different users.

The display name of the user is a claim of type name

For backwards compatibility (3.1.0 or earlier), this claim is also present as http://schemas.xmlsoap.org/ws/2005/05/

identity/claims/name

The name is used for displaying purpose of the user name on top of the web sites

Roles of the user are claims of type role

For backwards compatibility (3.1.0 or earlier), this claim is also present as http://schemas.xmlsoap.org/ws/2005/05/

identity/claims/sid

The roles are used to give users access permissions, for example, to access particular processes and activities

To give access to only a single user, the unique user ID can be used

3.1.3 Configuring the Service to Use an External Identity Provider

External identity providers can comfortably be configured via the Authorization Server Web UI by any administrator. The configuration

data is stored in the database and encrypted at rest with the data protection subsystem provided by .NET. The Authorization Server provides

integrated support for periodically fetching roles from Entra ID and Keycloak 19 - 21.

Important Any change regarding external IDP configuration requires a service restart.

The external IDP must be configured to allow the Authorization Server to delegate authentication calls to it. This requires usually at

minimum the following:

A registered application or client for the external IDP. A client ID in OIDC terms.

A client secret (depends on external IDP)

A redirect URI that the external IDP will send its code response to.

The redirect URI for the Authorization Server is https://<auth_service>/signin-oidc , for example https://

auth.contoso.com/signin-oidc if you host the Authorization Server on auth.contoso.com . Note that many external IDPs require

HTTPS.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.1.3 Configuring the Service to Use an External Identity Provider

- 18/40 - TCG Informatik AG

The following values must be available to be able to configure the Authorization Server:

IDP name: used to display the sign-in button and must not be empty.

Authority URL: a URL that is the base path of the external IDP's OIDC endpoints.

Metadata address: only required if it is not using a standard route behind the Authority URL

Client ID: The client ID that was created on the external IDP

Client secret: in case a confidential client is used and you want to automatically fetch roles available on the external IDP

User name claim type: the claim type that the external IDP writes the user name to

Name claim type: the claim type that the external IDP writes the user's display name to

Role claim type: the claim type that the external IDP writes the user's roles to

Additionally, you can define whether or not to

require HTTPS endpoints for the external IDPs OIDC endpoints. It is recommend to require HTTPs endpoints.

get additional claims from the user info endpoint, in case not all user claims are sent with the ID token

disable automatic role discovery, in case you do not want the Authorization Server to periodically fetch and store roles that are

available via the external IDP

map custom claims, for example when you want to give certain users a specific role

Define sign-in scopes, if the sign-in to the external IDP uses specific scopes

3.1.4 Configuring Claim Mappings

At the end of the configuration of the external identity provider, a list of custom claim mappings can be defined. They allow, for example, to

map particular users to specific roles, or to assign a standard role to every user, substituting for the Everyone SID claim that users signed

in via Active Directory receive.

The configuration understands 4 parameters:

Source claim type: The claim type (for example, role or preferred_username) of the claim that the external IDP provides. Can

be left empty if it defaults to the default role claim type.

Source claim values: A space separated list of claims, used as individual regex expressions.

Target claim type: The claim type of the target value. Can be left empty if it defaults to the default role claim type.

Target claim value: A claim that an authenticated user that matches the source type and value receives.

In most cases, the target claim type can be omitted since this feature is generally aimed at giving users additional roles.

Example: Assign the role 'everyone' to every user

The following configuration assigns the role everyone to every user that authenticates via the external IDP.

Leave the source and target claim types empty.

Set the source claim value to .* .

Set the target claim value to everyone .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.1.4 Configuring Claim Mappings

- 19/40 - TCG Informatik AG

Example: Assign the role 'administrator' to specific users (Entra ID)

The following configuration assigns the role administrator to the users with the usernames carl@contoso.com,

kevin.chalet@contoso.com and all users that are suffixed with -admin@contoso.com (like charlotte-admin@contoso.com).

Set the source claim type to preferred_username .

Set the source claim value to carl@contoso.com .*-admin@contoso.com kevin\.chalet@contoso.com

Set the target claim value to administrator

3.1.5 Examples

Here we provide sample configurations for the Authorization Server to add either Keycloak or Entra ID as an external IDP.

Example: Use Microsoft Entra ID as an External Identity Provider

If you have not yet prepared Entra ID to be used as an authentication provider (for example, you have not yet registered any application),

this documentation has a dedicated section that explains all required steps to set up Entra ID integration in detail.

If you already have client ID and secret, then simply follow these steps:

Log in as local administrator to the Authorization Server

Click on the "Identity Providers" tab

Click on "Add Entra ID"

Enter your configuration data. In this example, the following data is sufficient:

json

{

 "Name": "EntraID",

 "Authority": "https://login.microsoftonline.com/<tenant_guid>/v2.0",

 // MetadataAddress is not required since it uses the default path behind the Authority URL

 // "MetadataAddress": "https://login.microsoftonline.com/<tenant_guid>/v2.0/.well-known/openid-

configuration",

 "ClientId": "<registered application (client) id>",

 "ClientSecret": "<registered application secret>",

 "UsernameClaimType": "preferred_username",

 "RoleClaimType": "roles",

 "NameClaimType": "name",

}

Optionally add custom claim mappings

Click "Create" and restart the Authorization Server

•

•

•

1.

2.

3.

4.

5.

6.

3.1.5 Examples

- 20/40 - TCG Informatik AG

mailto:carl@contoso.com
mailto:kevin.chalet@contoso.com
mailto:-admin@contoso.com
mailto:charlotte-admin@contoso.com

Example: Use Keycloak as an External Identity Provider

This example below uses a local Keycloak installation on Docker. In real scenarios, the URL is not localhost and uses https.

Log in as local administrator to the Authorization Server

Click on the "Identity Providers" tab

Click on "Add Keycloak"

Enter your configuration data. In this example, the following data is sufficient:

json

{

 "Name": "Keycloak",

 "Authority": "http://localhost:8080/realms/master",

 // MetadataAddress is not required since it uses the default path behind the Authority URL

 //"MetadataAddress": "http://localhost:8080/realms/master/.well-known/openid-configuration",

 "ClientId": "oidc-code-pkce",

 "ClientSecret": "87pdXsjOO749Z2s9hO3iq3c3TydcF6vJ",

 "UsernameClaimType": "preferred_username",

 "RoleClaimType": "role",

 "NameClaimType": "name",

 "RoleDiscoveryBaseURL": "http://localhost:8080/admin/realms/master/"

}

Optionally add custom claim mappings

Click "Create" and restart the Authorization Server

Troubleshooting Permissions or Claims Given By External IDPs

As explained at the beginning of this chapter, it is important that th external IDP provides the required claims. If the external IDP, for

example, does include roles in the ID token or via the user info endpoint, the authenticated user also does not have any roles. The

Authorization Server shows you the claims of the current user on the main page if you set the appsettings.production.json setting

Service:ShowClaimsOnHome to true . Knowing this list of claims helps to fine-tune the integration into the external IDP.

Keycloak, for example, does not send any roles with a freshly pulled up docker container (quay.io/keycloak/keycloak:20.0.1). To

get roles for a user authenticated by Keycloak, you have to change Keycloak configuration first.

Click on Client Scopes , then edit the roles scope.

Click on Mappers , add a mapper by configuration , select the User Client Role mapper type.

Choose a name, leave the Client ID empty and set the Token Claim Name to role or roles , and ensure Add to ID Token is

selected.

Repeat the login into the Authorization Server, your user now has claims derived from his Keycloak roles.

For further finetuning and Keycloak configuration, we have to defer you to Keycloak documentation or to a Keycloak consultant of your

choice.

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

3.1.5 Examples

- 21/40 - TCG Informatik AG

Troubleshooting redirect URIs

The Authorization Service sends a redirect URL to the external IDP so that users can perform the authorization code flow with PKCE. The

redirect URIs are usually case sensitive, but that is ultimately decided by the IDP, so results may differ. Read up on the requirements of your

external IDP and verify that the redirect URI matches the exact casing.

3.1.5 Examples

- 22/40 - TCG Informatik AG

3.2 Using Entra ID as an External Identity Provider

This section explains the steps required to use Entra ID as an external IDP. It starts by describing the configuration on the Azure Portal, and

then describes the configuration settings of the Authorization Service.

3.2.1 Requirements

For this to work you need an Azure subscription that provides you with the Microsoft Entra ID service and an Entry ID tenant. For minimal

requirements, the basic account of Entra ID is sufficient. Having a paid subscription can make the role assignments to users easier. You also

need permissions on the Azure Portal to register an application, as well as the permission to add an enterprise application.

3.2.2 Preparations in the Azure Portal

Microsoft keeps an own guide (https://learn.microsoft.com/en-us/entra/identity/enterprise-apps/add-application-portal) on how to add

applications to Entra ID. If the UI changes, the Microsoft guide is likely more up to date than this documentation. The Microsoft guide also

offers more detail than what we can provide.

The steps you need to perform on the Azure Portal provide you with all the configuration settings to connect the Authorization Service to

Entra ID. Those settings include:

a client ID

a client secret

the tenant guid that identifies your organization on Entra ID

Create a new Application

Open the Microsoft Entra ID management blade on the Azure Portal

Click on 'App Registrations'.

Add a 'New Registration'.

Define a display name

Allow accounts in this organization. If you're familiar with Entra ID, you can of course also chose another option

Select 'Web' on the 'Redirect URI' part

Define a default redirect URI

The URI points to the Authorization Service so that if you host on https://auth.contoso.com you have to specify https://

auth.contoso.com/signin-oidc .

Use only lower-case characters - redirect URIs are case-sensitive.

You are now redirected to the 'Overview' page of the created application. The applications 'ClientID' is shown under 'Essentials'.

Click the 'Register' at the bottom.

In your newly created application, click on 'Add certificate or secret' to add a client secret that the Authorization Service requires for

integrating into Entra ID. You also reach this area by clicking on the 'Certificates & Secrets' area in the 'Manage' group on the left.

•

•

•

1.

2.

3.

•

•

•

•

4.

5.

6.

3.2 Using Entra ID as an External Identity Provider

- 23/40 - TCG Informatik AG

https://learn.microsoft.com/en-us/entra/identity-platform/quickstart-create-new-tenant
https://learn.microsoft.com/en-us/entra/identity-platform/quickstart-register-app
https://learn.microsoft.com/en-us/entra/identity/enterprise-apps/add-application-portal
https://learn.microsoft.com/en-us/entra/identity-platform/quickstart-register-app
https://portal.azure.com

Click on 'New Client Secret' - an area opens on the right.

Enter a description

Select a reasonable expiration date of the client secret. Keep in mind that you need to update the secret configured for the

Authorization Service after the secret expired.

Keep a copy of the value of your secret - it cannot be viewed after you leave this page.

After these steps you have 4 important values:

You created an application, and by doing that you obtained a client ID

The application showed you also the tenant guid

You created a client secret that allows the Authorization Service to use the client credentials flow

You defined a correct, case-sensitive redirect URI that points to the authorization service.

Tip Redirect URIs are a common pitfall. The RFC specification defines some basic requirements, but each IDP can have additional

constraints. If the redirect URI is an issue, please refer to the Microsoft documentation for redirect URI restrictions and limitations

(https://learn.microsoft.com/en-us/entra/identity-platform/reply-url).

If you do not want to define and assign roles to users, you can jump to the configuration of the Authorization Service.

Add Application Permissions for Role and User Discovery

The Authorization Server can actively discover roles and users that are available for signed-in Entra ID users. This search uses Microsoft

Graph and requires additional permissions. The permissions are set on the client application.

Navigate to the client application that you just created.

Click on 'API permissions' in the menu on the left.

Click 'Add a permission'. A menu on the right opens.

Click on Microsoft Graph

Click on 'Delegated permissions'

Select the delegated 'User.Read' permission

Click on 'Application permissions'

Select the application 'User.Read.All' permission

Click the button 'Add permissions' at the bottom of this panel.

Some permissions might require Admin Consent. If the consent is missing, you see a yellow warning icon.

Switch over to 'Enterprise applications' - there is a link below the table.

Click the big button 'Grant admin consent for XX' and grant admin consent.

If these permissions are not given, automatic role and user discovery of the Authorization Server does not work. Information-lvl logs are

written if Microsoft Graph responds missing permissions or other issues.

Define Roles and Apply them to Users

Application roles can be used to group your users. The roles can then be used by platforms and applications that authenticate users via the

Authorization Service to assign permissions in their internal role management. Assigning roles/groups instead of users individually allows

you easier configuration than assigning each user individually.

7.

•

•

8.

1.

2.

3.

4.

1.

2.

3.

a.

b.

i.

c.

i.

d.

4.

a.

b.

3.2.2 Preparations in the Azure Portal

- 24/40 - TCG Informatik AG

https://learn.microsoft.com/en-us/entra/identity-platform/reply-url
https://learn.microsoft.com/en-us/entra/identity-platform/reply-url
https://learn.microsoft.com/en-us/graph/overview?view=graph-rest-1.0
https://learn.microsoft.com/en-us/graph/overview?view=graph-rest-1.0

To create application roles in Entra ID, you must first add roles to your application and then assign users to these roles. Here, we explain the

steps needed to be done in the Azure portal. However, it is likely possible to use scripts and the Azure command line interface to automate

that process. Refer to the Azure documentation on how to do so.

Follow these steps to manually create an application role and assign a user to that role:

Click on 'App Roles' and create a new role. Chose any name, for example 'users' or 'administrators'

Repeat this step for all roles that you want to add

Click on 'How do I assign App roles' - a new properties panel opens on the right. Click on the link to 'Enterprise applications' that

redirects you to the configuration of your application in Enterprise application management

Click 'Users and Groups' on the 'Management' options group, or click the first button 'Assign users and groups' in the 'Getting Started'

section in the Overview

Assign users to roles

Click the button 'Add user/group' in the top menu.

Select one or more users you want to assign to a role

Select the role you want to assign to those users. If you have no roles defined yet, please define a role in your application first

Click on 'Assign' at the bottom. You now have assigned one role to the selected users

Repeat this step for all other roles that you want to assign to users

Creating roles is done in 'Application Registration', while assigning users is done in 'Enterprise applications'. Navigating normally

between both is slow. We recommend using the respective shortcuts: 'How do I assign App roles'->'Enterprise Applications' on your

applications 'App Roles' section to switch to the Enterprise application section of your app, and the link to 'application registration' on the

'Users and Groups' configuration area in the Enterprise Application panel of your app.

3.2.3 Configuring the Authorization Service for Entra ID integration

The final configuration is done entirely in the Web UI of the TCG Authorization Server. The data is stored and encrypted at rest in the

database. The encryption uses the data protection subsystem of .NET.

Log in as local administrator to the Authorization Server

Click on the "Identity Providers" tab

Click on "Add Entra ID"

Enter your configuration data. In this example, the following data is sufficient:

Optionally add custom claim mappings

Click "Create" and restart the Authorization Server

1.

•

2.

3.

4.

•

•

•

•

•

1.

2.

3.

4.

{
 "Name": "EntraID",
 "Authority": "https://login.microsoftonline.com/<tenant_guid>/v2.0",
 // MetadataAddress is not required since it uses the default path behind the Authority URL
 // "MetadataAddress": "https://login.microsoftonline.com/<tenant_guid>/v2.0/.well-known/openid-configuration",
 "ClientId": "<registered application (client) id>",
 "ClientSecret": "<registered application secret>",
 "UsernameClaimType": "preferred_username",
 "RoleClaimType": "roles",
 "NameClaimType": "name",
}

5.

6.

3.2.3 Configuring the Authorization Service for Entra ID integration

- 25/40 - TCG Informatik AG

3.3 Writing Plugins for the Authorization Server

You can write custom plugins for the Authorization Server to:

decide how users are verified via username + password: IUserLogin

handle custom credential flows aka custom grant types: ICustomGrantSignIn

add custom role discovery for a non-integrated identity provider: IRoleDiscovery

to modify claims given by an external identity provider: IExternalIdpClaimsMapper

to add custom services that your plugins might need (with reservations - if you remove required or add conflicting services, things can

break)

A nuget package is provided, called AuthorizationService.Interface . If it was not part of the delivered product, contact your

vendor.

3.3.1 Conventions

A plugin is written to adjust or define users claims, or to let the know all available roles.

The following claims are required:

sub: each identity must have a subject claim that has the type name 'sub'

username: the username of the user, having the claim type 'username'

name claim: the ClaimsIdentity must have a name claim of the type of the identity's name claim type

role claims: roles of the ClaimsIdentity are only taken into account if they have the type of the identity's role claim type

Sample implementations are made available in the AuthorizationService.PluginSample project.

JsonFileUserLogin shows how to implement the IUserLogin and which claims are expected

CustomEntraIDClaimMapper shows how claims coming from an IDP can be adjusted. Of course, Entra ID is supported implicitly so

that a plugin for that is not required.

CustomRoleDiscovery shows in a crude example how roles are collected via a web request. Usually, authenticated requests are

required for that. Doing so, is the responsibility of the implementer.

3.3.2 Implementation

To write a plugin, create a new .net project and reference the AuthorizationService.Interface.dll distributed with the Authorization Server.

Implement a class with a parameterless constructor for the interface IAuthorizationServerPlugin . Ensure that there exists exactly one

implementation of this interface. Plugin DLLs providing multiple or zero implementations result in service failure.

There are code samples in the AuthorizationService.PluginSample project

By default, the Authorization Server provides services for IUserLogin and IExternalIdpClaimsMapper . The default user login works

with Windows Active Directory only. Default services also exist for IRoleDiscovery aimed at Active Directory, Entra ID and Keycloak

•

•

•

•

•

•

•

•

•

•

•

•

3.3 Writing Plugins for the Authorization Server

- 26/40 - TCG Informatik AG

(at least version 19, 20, 21). An additional services automatically scrapes new roles from each authenticated user. There is no default for

ICustomGrantSignIn .

IUserLogin: Verifies password credentials and implements support for custom grant flows.

ICustomGrantSignIn: Receives custom request data that is transformed into a ClaimsPrincipal.

IExternalIdpClaimsMapper: Allows to define explicitly how claims of an external IDP have to be mapped onto the authenticated

ClaimsPrincipial.

IRoleDiscovery: periodically executed and returns a list of all available roles that users may get. Only of interest if the identity

provider is not supported implicitly.

Tip While developing a custom plugin it may be hard to determine the claims the authenticated principal receives. The setting Service-

>ShowClaimsOnHome enables displaying claims of the principal. It shows 2 sets: the claims that the user has on Authorization Server and

the claims that the user has assigned to issued the access token. The IExternalIdpClaimsMapper adjusts the claims of the user for

Authorization Server.

To configure the Authorization Server to use a plugin DLL, adjust manually or via a custom scripting task the

appsettings.production.json found in the directory of the Authorization Server. If the file does not yet exist, you can safely create it

and add the required settings. When using the platform installer, this section in the settings is not overwritten.

public class ExampleAuthorizationServerPlugin : IAuthorizationServerPlugin
{
 /// <summary>
 /// The method configures authorization server to use custom classes.
 /// Useful methods are for example:

 /// <see cref="IUserLogin"/>, <see cref="ICustomGrantSignIn"/> as singletons.

 /// When using an external IDP (like Entra ID or Keycloak), you can plug into adjusting claims as well as providing role discovery
via

 /// <see cref="IExternalIdpClaimsMapper"/> and <see cref="IRoleDiscovery"/> as transient services.

 /// </summary>
 /// <remarks>
 /// Be careful about adding additional services - you might be replacing or breaking required functionality.
 /// </remarks>
 public void SetupServices(IServiceCollection services, IConfiguration configuration)
 {
 // replaces the usual windows login
 services.TryAddSingleton<IUserLogin, CustomUserLogin>();
 services.TryAddSingleton<ICustomGrantSignIn, OurCustomGrant>();
 // adds another role discovery service
 services.AddTransient<IRoleDiscovery, CustomRoleDiscovery>();
 // adds another claims mapper
 services.AddTransient<IExternalIdpClaimsMapper, CustomClaimsMapper>();
 }
}

•

•

•

•

{
 "Service": {
 "PluginAssemblyPath": "c:\\path\\to\\your\\plugin.dll"
 }
}

3.3.2 Implementation

- 27/40 - TCG Informatik AG

3.4 Certificates

By default, when setting Authorization.AutocreateCertificates to false or leaving it empty, the Authorization Server uses

default certificates of the user that runs the Authorization Server. The keys that are used for .NET DataProtection are stored in

%localappdata%\ASP.NET\DataProtection-Keys where they are encrypted at rest by the Windows DPAPI. This is the easiest

approach and requires the least amount of manual configuration.

Which is user runs the Authorization Server process (this becomes important at the end of this section)? When the Authorization Server

runs on an application pool with the ApplicationPoolIdentity, its user is IIS APPPOOL\<appPoolName> , e.g. IIS

APPPOOL\DefaultAppPool . When the application pool runs as a technical user, e.g. "techie", then the user identity is

<machine_name>\techie . During startup, the Authorization Server logs the user identity it is using, in case it is unclear.

We recommend to store the .NET DataProtection keys in the database. For security reasons, these keys must be protected at rest. This is

ensured by configuring certificates that are used by the data protection system.

The DataProtection keys are stored in the database, when the app setting Service.DataProtection.PersistKeysInDatabase is set

to true .

3.4.1 Installing Certificates

In general, we recommend to use the Primus installer to set up certificates.

When certificates are changed later, users that already logged in have to log in again. Also, all client secrets cannot be decrypted anymore.

Any created client secret will continue to work though.

The Authorization Server contains a cmd line call that automatically creates certificates and adjusts the appsettings.production.json file for

the Authorization Server. Changing the certificates requires a restart of the Authorization Server, usually done by restarting the application

pool when hosting on IIS.

creates 5 certificates in the LocalMachine certificate store. To run multiple Authorization Server service instances, they must use the same

certificates. The following certificates are created:

Auth DataProtection Key Protector Certificate - protects the .NET DataProtection keys that are stored in the database

2x Auth DataProtection Key Unlock Certificate - allows for certificate rotation, used by the .NET DataProtection subsystem

Auth OpenIddict Server Encryption Certificate - for encrypting data that the OIDC framework OpenIddict creates

Auth OpenIddict Server Signing Certificate - for signing purposes of the OIDC framework OpenIddict

By default, the Authorization Server assumes to run as a single service. It can, however, be installed on multiple machines. If those

machines are reachable by different URLs, they do not serve the purpose of SSO, as the usual SSO pattern works by using a browser cookie

to keep the user signed in. However, for machine to machine communication that does not rely on SSO, this can reduce load on the primary

Authorization Server.

IMPORTANT: Please remember the part at the beginning of this section where the actual service user identity was mentioned. This is

important because certificates are usually not accessible to anyone on a system due to being sensitive data. When using certificates from the

certificate stores, you must ensure that the app pool's user identity has access to the certificate, including the private key. Otherwise, the

certificate cannot be used to decrypt encrypted data.

AuthorizationService.exe setup certificates -s LocalMachine -j .\appsettings.Production.json

•

•

•

•

3.4 Certificates

- 28/40 - TCG Informatik AG

You can manually edit and assign permission for certificates stored in the local machine certificate store. Open the local computer

certificate store mmc (select Run from the Start menu, and then enter certlm.msc), then use the steps select certificate -> right

mouse click -> All Tasks -> Manage Private Keys... . For the IIS APPPOOL\DefaultAppPool , assign the IIS_IUSRS group,

for technical app pool users assign that technical user or a user group of that user to the private key permissions.

3.4.2 Transferring certificates between machines or reusing existing certificates

The Primus installer does not offer an option to configure the certificate thumbprints directly. It also does not have options to transfer

certificates automatically between machines.

Please create your own powershell scripts to automate this task, or use the manual steps described earlier.

3.4.2 Transferring certificates between machines or reusing existing certificates

- 29/40 - TCG Informatik AG

3.5 Application Settings explained in detail

This chapter explains the following configuration sections:

3.5.1 Serilog

The serilog settings are documented well here: https://github.com/serilog/serilog-settings-configuration

The Authorization Server ships, by default, with the sinks file, eventlog, async and seq, as well as the log enrichers

FromLogContext

WithMachineName

WithThreadId

WithProcessId

3.5.2 ConnectionStrings

The connection string section consists of key-value pairs of database provider to connection string. The database provider that is used by the

application is set in Service.DatabaseProvider .

The following data providers are supported: mssql , postgresql , oracle , db2 , sqlite and inmemory . The last two providers are

only recommended for demo or development purposes.

{
 "Serilog" : {},
 "ConnectionStrings" : {},
 "Service" : {},
 "AllowedHosts": "*"
}

•

•

•

•

"ConnectionStrings": {
 "postgresql":
"Server=127.0.0.1;Port=5432;Database=auth;Userid=postgres;Password=postgres;Pooling=false;MinPoolSize=1;MaxPoolSize=20;Timeout=15;SslMode=Disable;",
 "oracle": "Data Source=localhost:1521/orcl.docker.internal;User Id=\"C##test_auth_user\";Password=password",
 "mssql": "Data Source=localhost;Initial Catalog=auth;Integrated Security=True",
 "sqlite": "Data Source=c:\\data\\auth.db"
}

3.5 Application Settings explained in detail

- 30/40 - TCG Informatik AG

https://github.com/serilog/serilog-settings-configuration

3.5.3 Service

This is the main configuration section of the Authorization Server.

DisableHttpsRequirement: whether or not the Authorization Server will answer non-https requests. Defaults to false . This should

only be enabled if it can be secured that no http traffic is susceptible for interception

Ssl: whether or not to use HSTS and HTTPS redirects

Session: fine-tuning SSO session parameters, allowing to trade ease of use with tighter security

DatabaseProvider: defines the connection string that is used and the database provider that will connect to a DB backend

DataProtection: configures the .NET DataProtection subsystem. In simple scenarios with only 1 Authorization Server it is not

necessary to adjust it at all

AuthCertificates: encryption and signing certificates used by the OIDC framework OpenIddict

PluginAssemblyPath: allows to replace the default user authentication mechanism that works against the local Windows machine and/

or ActiveDirectory with a custom authentication mechanism

Cors: allows to set allowed request origins. If set, only provided origins are allowed to send requests

Proxy: see "Setting up a load balancer" in the installation guide for more information

A short sample of this section

DataProtection

The .NET DataProtection subsystem is used to ensure encryption at rest of sensitive data such as client secrets or user tokens.

If the keys are not stored in their default location, either by using PersistKeysInDatabase or PersistKeysPath, they are not encrypted at rest

unless they are explicitly protected by configured certificates. Therefore, we recommend to set ProtectKeysThumbprint to the thumbprint of

•

•

•

•

•

•

•

•

•

{
 "Service": {
 "DisableHttpsRequirement": false,
 "Ssl": {
 "EnableHttpsRedirection": false,
 "UseHsts": true,
 "HstsMaxAgeHours": 720
 },
 "Session": {
 "ExpirationTimeSpanSeconds": 7200, // expires the cookie after 7200 seconds. By default, the cookie expires only after 14 days.
 "CookiePath": "/auth", // in case of co-hosting with other services on a single VM, you can limit when the cookie is sent with
requests. In thise case, the AuthorizationServer is hosted on https://my.contoso.com/auth
 "RefreshTokenLifetimeSeconds": 7200, // issued refresh tokens expire after 7200 seconds. The default is 14 days.
 "AccessTokenLifetimeSeconds": 1200 // shortlived access token. Default is 1 hour
 },
 "DatabaseProvider": "mssql",
 "DataProtection": {
 "ApplicationName": "myapp",
 },
 "AuthCertificates": {
 "Style": "automatic"
 },
 "PluginAssemblyPath": null, //"C:\\path_to\\AuthorizationService.SamplePlugin.dll",
 "Cors": {
 "Origins": []
 },
 "Proxy": {}
 }
}

3.5.3 Service

- 31/40 - TCG Informatik AG

a certificate that can be found in the Windows certificate store that is accessible by the Authorization Server user. If that is not possible,

provide the file and password.

ApplicationName: if set, allows shared access to protected payloads (data protection) if application base paths differ but multiple

installed apps are working together

PersistKeysInDatabase: if set to true , the keys of the .NET DataProtection subsystem are stored in the Authorization Server DB.

Defaults to false .

PersistKeysPath: in production scenarios with multiple machines, it is recommended to persist keys to a path and protect them.

Defaults to "" .

AuthCertificates

These are certificates used by the OIDC framework OpenIddict. They may be used for encryption and signing of tokens. By default,

OpenIddict automatically creates "development" certificates that are perfectly functional for a simple installation.

Style: defaults to automatic that automatically sets up certificates for the service user. For distributed installations, persisted is

recommended

EncryptionCertificates/SigningCertificates: lists of certificates that are used for encryption and or signing. Multiple certificates can be

specified to support certificate rotation

Thumbprint: A certificate thumbprint either in the LocalMachine or CurrentUser personal store (my). The Authorization Server

requires of course access

Path/Password: in case it is not possible to use certificates from the certificate stores. Since the password cannot be protected, this

requires that that machine on that the Authorization Server runs is secured.

//"StyleOptions": "ephemeral (default), automatic, persisted",

•

•

•

{
 "DataProtection": {
 "ApplicationName": null,
 "PersistKeysInDatabase": false,
 "PersistKeysPath": "",
 "ProtectKeysThumbprint": "",
 "ProtectKeysFile": "",
 "ProtectKeysPassword": "",
 "UnprotectWithMultipleKeys": false,
 "UnprotectMultipleThumbprint1": "",
 "UnprotectMultipleThumbprint2": "",
 "UnprotectMultipleFile1": "",
 "UnprotectMultiplePassword1": "",
 "UnprotectMultipleFile2": "",
 "UnprotectMultiplePassword2": ""
 }
}

•

•

•

•

{
 "AuthCertificates": {
 "Style": "persisted",
 "EncryptionCertificates": [
 {
 "Thumbprint": "a5511be2236f5d7f6ec8d95dc7e37fc54bf1e14b"
 },
 {
 "Path": "c:\\auth_svc\\openIddict_enc_cert2.pfx",
 "Password": "my secret pwd"
 },
],
 "SigningCertificates": [
 {
 "Thumbprint": "a5511be2236f5d7f6ec8d95dc7e37fc54bf1e14c"
 }
]

3.5.3 Service

- 32/40 - TCG Informatik AG

 }
}

3.5.3 Service

- 33/40 - TCG Informatik AG

3.6 Using Postman to Test Authentication Flows

In some cases it helps to look at the authorization calls directly to verify that an installation is working properly or to troubleshoot problems.

We will showcase how to use Postman (https://www.postman.com/) to send web requests to the TCG Authorization Server to test

authentication and authorization calls. Other API clients such as Insomnia will work similarly (https://insomnia.rest/).

This section is intended for developers or person familiar with HTTP. Experience with API clients such as Postman is highly

recommended.

For the following samples we assume that the authorization service is hosted on https://auth.contoso.com.

3.6.1 Requesting the Open ID Connect discovery document

The discovery document contains Open ID Connect configuration and is used by many client libraries to configure the endpoints that will

be used to request authorization, tokens or certificates.

Create a new request

Use the HTTP GET method, set the URL to https://auth.contoso.com/.well-known/openid-configuration

The response will be the discovery document. You can of course also use a browser and just paste a url adjusted to your authorization

service host.

3.6.2 Obtaining an Token via Grant Type Client Credentials

Client credentials are used by the Primuss resource services. They expect that on the Authorization Server a confidential client is

configured, along with the permissions Interactive Activities, Unattended Activities and Process Monitor.

Create a new request

Use the http POST method, set the URL to https://auth.contoso.com/connect/token

Do not use parameters, leave the Authorization as No Auth

The body is x-www-form-urlencoded

Set the following values:

client_id: your_confidential_client_id

client_secret: your_client_secret

grant_type: client_credentials

scope: openid interactive unattended procmon

The response, if successful, looks like

1.

2.

{
 "issuer": "https://auth.contoso.com/",
 "authorization_endpoint": "https://auth.contoso.com/connect/authorize",
 "token_endpoint": "https://auth.contoso.com/connect/token",
 ...
}

1.

2.

3.

4.

5.

a.

b.

c.

d.

{
 "access_token": "8fpSK01eKQfOlsz0FcfDUZW17QZettDmu-j2CuXZwK4",

3.6 Using Postman to Test Authentication Flows

- 34/40 - TCG Informatik AG

https://www.postman.com/
https://insomnia.rest/
https://www.postman.com/
https://auth.contoso.com
https://auth.contoso.com/.well-known/openid-configuration
https://auth.contoso.com/connect/token

3.6.3 Obtaining a Token via the Authorization Code Flow

The authorization code flow is a 2-step procedure that makes it possible that the web client that requires access to a resource can be

authorized to retrieve an access token. The authorization happens by the user authenticating to the Authorization Server, potentially entering

his user credentials.

By using this flow, the web client does not ever get access to user credentials, making this the current de-facto standard for authenticating

users across the web. The authorization code flow requires a code challenge that depends on calculating the hash (usually SHA256) of a

client-side generate code_verifier.

To test this flow, you need a registered client for the Authorization Code flow, with any redirect URI (in this example we use http://

localhost/signin-oidc) and the permission Interactive Activities.

Create a new GET request to https://auth.contoso.com/connect/userinfo

Go to the Authorization Tab below the URL input

Select Type OAuth 2.0

In Configure New Token, configure:

Grant Type: Authorization Code (With PKCE)

Callback URL: https://localhost/signin-oidc (but do not select Authorize using browser)

Auth URL: https://auth.contoso.com/connect/authorize

Access Token URL: https://auth.contoso.com/connect/token

Client ID: your_public_client_id

Client Secret: leave empty

Code Challenge Method: SHA-256

Scope: offline_access openid interactive profile

State: 1234

Click Get New Access Token

A dialog opens and expects you to log into the Authorization Server. Log in.

The Token Details show your access token, your id token (due to scope openid) and your refresh token (due to scope offline_access)

copy your refresh token.

Click Use Token

Now send the GET request to the userinfo endpoint and retrieve information about the roles and scopes that are applied to your user.

 "token_type": "Bearer",
 "expires_in": 3599,
 "id_token": "<a signed JWT>"
}

1.

2.

3.

4.

a.

b.

c.

d.

e.

f.

g.

h.

i.

5.

6.

7.

a.

8.

3.6.3 Obtaining a Token via the Authorization Code Flow

- 35/40 - TCG Informatik AG

3.6.4 Obtaining a Token via Grant Type Refresh Token

If you do not yet have a refresh token, perform the steps in the Authorization Code Flow example and copy the refresh token once your

login was successful.

Create a new POST reuqest to https://auth.contoso.com/connect/token

Go to the Body tab, select x-www-form-urlencoded

Enter the following keys and values:

client_id: your_public_client_id

grant_type: refresh_token

refresh_token: YY4DaZOBufXw3nZlRYog1WVmb3eKMJeLIL2GmqbmBrQ (actually, the refresh_token you copied earlier)

Send the request

The response contains a new access and refresh token, tells you the new token expiration (in 60 minutes), the granted scopes and the id

token with user information that is used by the client application to display information about you.

Important The issuer of the ID token must be verified and must match the authority URL.

1.

2.

3.

a.

b.

c.

4.

{
 "access_token": "y3tNjPxk6KZaWtumRZnYSzQqex_WELVBfxV4tM-WkYE",
 "token_type": "Bearer",
 "expires_in": 3600,
 "scope": "openid offline_access interactive profile",
 "id_token": "<a signed JWT>",
 "refresh_token": "HWj-2ejYlFlU5HjKZagY0GTe_XJZ5JoTzqZ2yuqNb8k"
}

3.6.4 Obtaining a Token via Grant Type Refresh Token

- 36/40 - TCG Informatik AG

4. About

4.1 Release Notes

The TCG Authorization Server release notes contain important information that you are recommended to read before using this product.

4.1.1 What's new for Version 3.1.3

The routes api/roles , api/users and api/identityproviders are now available for confidential clients with the resource

service permission. Querying roles is used for user role assignments, for example on the platform service.

Support for custom schema names on PostgreSQL, as long as they are lowercase. Also see the Installation Configuration section in

the Installation Guide.

On Oracle, an unsupported transaction isolation level was logged as an error by the Oracle library. Database access code was changed

to not use that isolation level with oracle to prevent the logged error. The error did not inhibit functionality.

The database configuration for SQLServer has been extended to support mandatory and strict SSL connections to the SQLServer. Two

new properties have been added to the configuration.

For backwards compatibility, in case encryption has not been specified, the service defaults to trust the certificate chain and to only

optionally use encrypted communication.

Azure AD (Azure ActiveDirectory) has been renamed to (Microsoft) Entra ID

Entra ID user discovery gets paginated responses and did not discover more than 100 users. The new implementation fetches all

available pages and enlarges the page size to 999.

Software Bills of Material are now part of the installation. They are found in the installation directory under "SBOM":

<install_dir>\SBOM .

Updated Vulnerable Dependencies

Notable are:

System.IdentityModel.Tokens.Jwt 6.24.0 -> 6.35.0 (moderate):

Microsoft Security Advisory CVE-2024-21319: .NET Denial of Service Vulnerability

Microsoft.Data.SqlClient 2.1.4 -> 5.1.4 (high):

Microsoft.Data.SqlClient and System.Data.SqlClient vulnerable to SQL Data Provider Security Feature Bypass

4.1.2 What's new for Version 3.1.2

Add an API endpoint that allows searching for users by username (GET ~/api/users/?name=JohnDoe)

Add an API endpoint to get the current version (GET ~/api/version)

Add an API endpoint for get active identity provides, for example, ActiveDirectory and Keycloak (GET ~/api/identityproviders).

Administrative permissions are required.

ID Tokens now contain authority and identity_provider entries to expose how the user was authenticated.

•

•

•

•

•

•

•

•

•

•

•

•

•

4. About

- 37/40 - TCG Informatik AG

https://github.com/advisories/GHSA-59j7-ghrg-fj52
https://github.com/advisories/GHSA-98g6-xh36-x2p7

Fixed Thirdparty Vulnerabilities

Update Oracle.EntityFrameworkCore to version 6.21.90 due to CVE-2023-21893 in Oracle.EntityFrameworkCore https://github.com/

advisories/GHSA-5pm2-9mr2-3frq: Component takeover in Oracle Data Provider for .NET

Update System.Security.Cryptography.Pkcs from version 6.0.1 to 6.0.3 due to CVE-2023-29331 https://github.com/advisories/

GHSA-555c-2p6r-68mm: .NET Denial of Service vulnerability

Bugfixes

The external IDP configuration panel did not allow setting multiple claim mappings, or to delete claim mappings. Disabling the

password login box when using an external identity provider is fixed.

IIS request filtering is set to 10000kb by default, to prevent issues with large ID tokens. Extend documentation about IIS request

filtering limitation and how to configure scopes for rich client application registrations

Provide a more helpful error message when configuring an invalid redirect URI (fragments are not allowed)

The auth-admin client registration incorrectly received password and authorization code flow permissions. It now only has the client

credential authorization flow enabled.

Bugfixes

The external IDP configuration panel did not allow setting multiple claim mappings, or to delete claim mappings. Disabling the

password login box when using an external identity provider is fixed.

IIS request filtering is set to 10000kb by default, to prevent issues with large ID tokens. Extend documentation about IIS request

filtering limitation and how to configure scopes for rich client application registrations

Provide a more helpful error message when configuring an invalid redirect URI (fragments are not allowed)

The auth-admin client registration incorrectly received password and authorization code flow permissions. It now only has the client

credential authorization flow enabled.

•

•

•

•

•

•

•

•

•

•

4.1.2 What's new for Version 3.1.2

- 38/40 - TCG Informatik AG

https://github.com/advisories/GHSA-5pm2-9mr2-3frq
https://github.com/advisories/GHSA-5pm2-9mr2-3frq
https://github.com/advisories/GHSA-555c-2p6r-68mm
https://github.com/advisories/GHSA-555c-2p6r-68mm

4.1.3 What's new for Version 3.1.1

Version 3.1.1 contains security improvements, better external Identity Provider integration, and several bug fixes.

Security for the user has been improved:

Session cookies allow for deleting of a session on the server side.

After a sign-out, even using a copy of the issued cookie does not allow users to be logged in

Sign-out provides the user the option to delete all tokens that have been issued for this user

Cookie expiration time spans, as well as access and refresh token expiration time spans can be adjusted.

Short time spans provider higher security, longer time spans are more comfortable for users.

The message during sign-out has been improved to better communicate to the user what is going to happen

SSL usage: redirect to HTTPS is configurable

SSL usage: HSTS with configurable max-age header

External Identity Providers are configurable via the Web UI. Entra ID and Keycloak are integrated so that no plugins must be written.

Roles of external IDPs are fetched periodically in the background, as well as collected whenever a user authenticates via them.

Reverse Proxy capabilities have been improved:

Forwarded headers allow SSL offloading and defining the authority's hostname,

so that internal and external applications can use the same instance.

Available roles/groups are stored in the database, to improve integration of external IDPs.

A new cmd line option -ConfigOnly for configuring the appsettings with an encrypted connection string without touching the

database:

AuthorizationService.exe setup database -c "connection string..." -p PostgreSQL -

EncryptionCertificateThumbprint MYTHUMBPRINT -ConfigOnly

Breaking Changes

The nuget package and the namespaces for the TCG Authorization Server interface DLLs has changed.

If you wrote a plugin, you have to adjust and recompile it.

This drastic step was taken because we were able to obsolete most reasons for a plugin.

The configuration setting to load a plugin changed from Service->UserStoreAssemblyPath to Service-

>PluginAssemblyPath

The IClaimsSearcher interface was dropped.

Claim changes: a user has the subject claim set to a unique identifier, instead of the username.

The username value is stored in a 'username' claim.

The user's display name is stored in the 'name' claim.

Appliations displaying the user's display name or username in a UI must adjust.

Load balancing requires X-Forwarded-* headers.

Please read the documentation section and update the load balancer or reverse proxy configuration.

4.1.4 What's new for Version 3.1

Primus API 3.1

New component that allows you to achieve single sign-on (SSO) for Primus and its components and external clients.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.1.3 What's new for Version 3.1.1

- 39/40 - TCG Informatik AG

4.2 Copyright

Copyright © 2013-2024 TCG Informatik AG, Mühlegasse 18, 6340 Baar, Switzerland.

All rights reserved.

Information in this document is subject to change without notice and does not bear any commitment on the part of TCG Informatik AG. The

software described in this document is supplied under a license agreement. The software may only be used or copied in strict accordance

with the terms of the agreement. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or

translated into any language in any form by any means without the written permission of TCG Informatik AG. While every precaution has

been taken in the preparation of this document, TCG Informatik AG assumes no responsibility for errors, omissions, or for damages

resulting from the use of the information herein. Products or corporate names may be trademarks or registered trademarks of other

companies and are used only for the explanation and to the owner's benefit, without intent to infringe.

4.2 Copyright

- 40/40 - TCG Informatik AG

	Authorization Server Version 3.1.3
	1. Getting Started
	1.1 System Requirements
	1.1.1 Operating System
	Supported
	Recommended

	1.1.2 Microsoft Windows Server Roles and Features
	Setting Up IIS
	.NET 6 Hosting Bundle for IIS
	Configured SSL Certificates
	Extended IIS Maximum Query String Length

	1.1.3 Encrypted Communication (HTTPS)
	1.1.4 Hardware Requirements
	Storage
	Memory and CPU

	1.1.5 Supported Database Server
	MS SQL Server
	Oracle
	PostgreSQL
	DB2
	Azure SQL

	1.2 Understanding the User Interface
	1.2.1 Header Toolbar
	1.2.2 Home Tab
	User
	Password

	1.2.3 Sessions
	1.2.4 Management Tab
	1.2.5 Roles
	1.2.6 Identity Providers
	1.2.7 Toolbar and Other Icons
	1.2.8 Shortcut Keys

	1.3 How to get Started
	1.3.1 Creating a new Client

	1.4 Manually registering clients (applications) to the Authorization Service
	1.4.1 Example: Create a Client for an Activity Server
	1.4.2 Example: Create a client for an Activity Server as technical user
	Obtaining a windows user SID

	1.4.3 Example: Create a Client to be used by a Website
	1.4.4 Example: Create a Client for a Rich Desktop Application
	1.4.5 Example: Create a Client for a resource service of the Primus Process Management System (a daemon application)
	1.4.6 Example: Create a Client for an application that uses the password grant flow

	2. Concepts
	2.1 Platform Authorization and Authentication
	Authorization Code Flow with PKCE
	Authorization via User Name and Password
	Authorization via client credentials
	2.1.1 Refresh Token Flow

	3. Advanced Topics
	3.1 External Identity Providers
	3.1.1 Claims Required from the External IDP
	3.1.2 Claim Required by the Platform
	3.1.3 Configuring the Service to Use an External Identity Provider
	3.1.4 Configuring Claim Mappings
	Example: Assign the role 'everyone' to every user
	Example: Assign the role 'administrator' to specific users (Entra ID)

	3.1.5 Examples
	Example: Use Microsoft Entra ID as an External Identity Provider
	Example: Use Keycloak as an External Identity Provider
	Troubleshooting Permissions or Claims Given By External IDPs
	Troubleshooting redirect URIs

	3.2 Using Entra ID as an External Identity Provider
	3.2.1 Requirements
	3.2.2 Preparations in the Azure Portal
	Create a new Application
	Add Application Permissions for Role and User Discovery
	Define Roles and Apply them to Users

	3.2.3 Configuring the Authorization Service for Entra ID integration

	3.3 Writing Plugins for the Authorization Server
	3.3.1 Conventions
	3.3.2 Implementation

	3.4 Certificates
	3.4.1 Installing Certificates
	3.4.2 Transferring certificates between machines or reusing existing certificates

	3.5 Application Settings explained in detail
	3.5.1 Serilog
	3.5.2 ConnectionStrings
	3.5.3 Service
	DataProtection
	AuthCertificates

	3.6 Using Postman to Test Authentication Flows
	3.6.1 Requesting the Open ID Connect discovery document
	3.6.2 Obtaining an Token via Grant Type Client Credentials
	3.6.3 Obtaining a Token via the Authorization Code Flow
	3.6.4 Obtaining a Token via Grant Type Refresh Token

	4. About
	4.1 Release Notes
	4.1.1 What's new for Version 3.1.3
	Updated Vulnerable Dependencies

	4.1.2 What's new for Version 3.1.2
	Fixed Thirdparty Vulnerabilities
	Bugfixes
	Bugfixes

	4.1.3 What's new for Version 3.1.1
	Breaking Changes

	4.1.4 What's new for Version 3.1

	4.2 Copyright

